Table operations cheat sheet
Create tables
Empty tables
result = emptyTable(5)
// Empty tables are often followed with a formula
result1 = result.update("X = 5")
- result
- result1
New tables
Columns are created using the following methods:
result = newTable(
intCol("IntegerColumn", 1, 2, 3),
stringCol("Strings", "These", "are", "Strings")
)
- result
Time tables
The following code makes a timeTable
that updates every second.
result = timeTable("PT00:00:01")
- result
Filter
You should filter your data before performing other operations to optimize performance. Less data generally means better, faster queries.
where
For SQL developers: In Deephaven, filter your data before joining using where
operations. Deephaven is optimized for filtering rather than matching.
import io.deephaven.api.filter.FilterOr
import io.deephaven.api.filter.Filter
source = newTable(
stringCol("Letter", "A", "C", "F", "B", "E", "D", "A"),
intCol("Number", NULL_INT, 2, 1, NULL_INT, 4, 5, 3),
stringCol("Color", "red", "blue", "orange", "purple", "yellow", "pink", "blue"),
intCol("Code", 12, 13, 11, NULL_INT, 16, 14, NULL_INT),
)
resultSingleFilter = source.where("Color = `blue`")
resultOR = source.where(FilterOr.of(Filter.from("Color = `blue`", "Number > 2"))) // OR operation - result will have _either_ criteria
resultAND = source.where("Color = `blue`", "Number > 2") // AND operation - result will have _both_ criteria
- source
- resultSingleFilter
- resultOR
- resultAND
To filter results based on a filterTable
:
filterTable = newTable(
stringCol("Colors", "blue", "red", "purple", "white"),
intCol("Codes", 10, 12, 14, 16)
)
// returns a new table containing rows from the source table
whereInColors = source.whereIn(filterTable, "Color = Colors")
whereInColorsAndCodes = source.whereIn(filterTable, "Color = Colors", "Code = Codes") // AND operation - result will have both criteria
whereNotInColors = source.whereNotIn(filterTable, "Color = Colors")
- filterTable
- whereInColors
- whereInColorsAndCodes
- whereNotInColors
head and tail
Used to reduce the number of rows:
tail = source.tail(5) // returns last 5 rows
tailPct = source.tailPct(0.25) // returns last 25% of rows
headPct = source.headPct(0.75) // returns last 75% of rows
head = source.head(2) // returns the first 2 rows
- tail
- tailPct
- headPct
- head
Join data
See our guide Choose a join method for more details.
For SQL developers: in Deephaven, joins are normally used to enrich a data set, not filter. Use where
to filter your data instead of using a join.
Joins for close matches (time)
aj (As-Of Join)
As-of joins aj
find "the exact match" of the key or "the record just before". For timestamp aj-keys, this means "that time or the record just before".
leftTable = rightTable.aj(columnsToMatch, columnsToAdd)
trades = newTable(
stringCol("Ticker", "AAPL", "AAPL", "AAPL", "IBM", "IBM"),
instantCol("TradeTime", parseInstant("2021-04-05T09:10:00 ET"), parseInstant("2021-04-05T09:31:00 ET"), parseInstant("2021-04-05T16:00:00 ET"), parseInstant("2021-04-05T16:00:00 ET"), parseInstant("2021-04-05T16:30:00 ET")),
doubleCol("Price", 2.5, 3.7, 3.0, 100.50, 110),
intCol("Size", 52, 14, 73, 11, 6)
)
quotes = newTable(
stringCol("Ticker", "AAPL", "AAPL", "IBM", "IBM", "IBM"),
instantCol("QuoteTime", parseInstant("2021-04-05T09:11:00 ET"), parseInstant("2021-04-05T09:30:00 ET"), parseInstant("2021-04-05T16:00:00 ET"), parseInstant("2021-04-05T16:30:00 ET"), parseInstant("2021-04-05T17:00:00 ET")),
doubleCol("Bid", 2.5, 3.4, 97, 102, 108),
intCol("BidSize", 10, 20, 5, 13, 23),
doubleCol("Ask", 2.5, 3.4, 105, 110, 111),
intCol("AskSize", 83, 33, 47, 15, 5),
)
result = trades.aj(quotes, "Ticker, TradeTime >= QuoteTime")
- trades
- quotes
- result
raj (Reverse As-Of Join)
Reverse As-of joins raj
find "the exact match" of the key or "the record just after". For timestamp reverse aj-keys, this means "that time or the record just after".
result = leftTable.raj(rightTabke, columnsToMatch, columnsToAdd)
result = trades.raj(quotes, "Ticker, TradeTime <= QuoteTime", "Bid, Offer = Ask")
- result
Joins with exact match
nj (Natural Join)
- Returns all the rows of the left table, along with up to one matching row from the right table.
- If there is no match in the right table for a given row, nulls will appear for that row in the columns from the right table.
- If there are multiple matches in the right table for a given row, the query will fail.
leftTable.naturalJoin(rightTable, columnsToMatch, columnsToAdd)
The right table of the join needs to have only one match based on the key(s).
left = newTable(
stringCol("LastName", "Rafferty", "Jones", "Steiner", "Robins", "Smith", "Rogers", "DelaCruz"),
intCol("DeptID", 31, 33, 33, 34, 34, 36, NULL_INT),
stringCol("Telephone", "(303) 555-0162", "(303) 555-0149", "(303) 555-0184", "(303) 555-0125", "", "", "(303) 555-0160")
)
right = newTable(
intCol("DeptID", 31, 33, 34, 35),
stringCol("DeptName", "Sales", "Engineering", "Clerical", "Marketing"),
stringCol("Telephone","(303) 555-0136", "(303) 555-0162", "(303) 555-0175", "(303) 555-0171")
)
result = left.naturalJoin(right, "DeptID", "DeptName, DeptTelephone = Telephone")
- left
- right
- result
join
Similar to SQL inner join, join
returns all rows that match between the left and right tables, potentially with duplicates.
- Returns only matching rows.
- Multiple matches will have duplicate values, which can result in a long table.
exactJoin
- Returns all rows of
leftTable
. - If there are no matching keys result will fail.
- Multiple matches will fail.
Merge tables
Create a new table made of all of table 1, followed by all of table 2, etc. All tables must have the same column names (schema) when merged.
source1 = newTable(col("Letter", "A", "B", "D"), col("Number", 1, 2, 3))
source2 = newTable(col("Letter", "C", "D", "E"), col("Number", 14, 15, 16))
source3 = newTable(col("Letter", "E", "F", "A"), col("Number", 22, 25, 27))
tableArray = [source1, source2, source3]
result = merge(tableArray)
- source1
- source2
- source3
- result
View table metadata
Useful to make sure schema matches before merging. Shows the column names, data types, partitions, and groups for the table.
seeMetadata = source.meta()
- seeMetadata
Sort
Single direction sorting:
Sort on multiple column or directions:
Reverse the order of rows in a table:
import io.deephaven.api.SortColumn
import io.deephaven.api.ColumnName
source = newTable(
stringCol("Letter", "A", "C", "F", "B", "E", "D", "A"),
intCol("Number", NULL_INT, 2, 1, NULL_INT, 4, 5, 3),
stringCol("Color", "red", "blue", "orange", "purple", "yellow", "pink", "blue"),
intCol("Code", 12, 13, 11, NULL_INT, 16, 14, NULL_INT),
)
sort_columns = [
SortColumn.asc(ColumnName.of("Number")),
SortColumn.desc(ColumnName.of("Number"))
]
resultMultiDirection = source.sort(sort_columns)
resultMultiSort = source.sort("Number", "Number") // Number then Number
sortDesc = source.sortDescending("Number") // highest to lowest
sortAsc = source.sort("Number") // lowest to highest
reverseTable = source.reverse() // HEAVILY USED! Very cheap to support GUIs
- source
- resultMultiDirection
- resultMultiSort
- sortDesc
- sortAsc
- reverseTable
Select and create new columns
Option 1: Choose and add new columns - calculate and write to memory
Use select
and update
when data is expensive to calculate or accessed frequently. Results are saved in RAM for faster access, but takes more memory.
source = newTable(
stringCol("Letter", "A", "C", "F", "B", "E", "D", "A"),
intCol("Number", NULL_INT, 2, 1, NULL_INT, 4, 5, 3),
stringCol("Color", "red", "blue", "orange", "purple", "yellow", "pink", "blue"),
intCol("Code", 12, 13, 11, NULL_INT, 16, 14, NULL_INT),
)
selectColumns = source.select("Letter", "Number")
// constrain to only those 2 columns, write to memory
selectAddCol = source.select("Letter", "Number", "New = Number - 5")
// constrain and add a new calculated column
selectAndUpdateCol = source.select("Letter", "Number").update("New = Number - 5")
// add a new calculated column - logically equivalent to previous example
- source
- selectColumns
- selectAddCol
- selectAndUpdateCol
Option 2: Choose and add new columns - reference a formula and calculate on the fly
Use view
and updateView
when formula is quick to calculate or only a portion of the data is used at a time. Minimizes RAM used.
viewColumns = source.view("Letter", "Number")
// similar to select(), but uses on-demand formula
viewAddCol = source.updateView("Letter", "Number", "New = Number - 5")
// view set and add a column with an on-demand formula
viewAndUpdateViewCol = source.view("Letter", "Number").updateView("New = Number - 5")
// logically equivalent to previous example
- viewColumns
- viewAddCol
- viewAndUpdateViewCol
Option 3: Add new columns - reference a formula and calculate on the fly
Use lazyUpdate
when there are a small number of unique values. On-demand formula results are stored in cache and re-used.
lazyUpdateEx = source.lazyUpdate("Letter", "Number", "New = Number - 5")
- lazyUpdateEx
Manipulate columns
uniqueValues = source.selectDistinct("Letter") // show unique set
// works on all data types - be careful with doubles, longs
renameStuff = source.renameColumns("NewLetter = Letter", "NewNumber = Number")
dropColumn = source.dropColumns("Number") // drop one or many
putColsAtStart = source.moveColumnsUp("Number") // make Number the first column(s)
putColsWherever = source.moveColumns(1, "Number") // make Number the second column
- uniqueValues
- renameStuff
- dropColumn
- putColsAtStart
- putColsWherever
Group
See How to group and ungroup data for more details.
groupToArrays1 = source.groupBy("Letter") // one row per key; all other columns are arrays
multipleKeys = source.groupBy("Letter", "Number") // one row for each key-combination
- groupToArrays1
- multipleKeys
Ungroup
Expands out each row so that each value in any array inside that row becomes itself a new row.
aggByKey = source.groupBy("Letter")
// one row per Letter; other fields are arrays from source
ungroupThatOutput = aggByKey.ungroup() // no arguments usually
// each array value becomes its own row
// in this case turns grouped table back into source
- aggByKey
- ungroupThatOutput
Aggregate
See our guides for more details:
// IMPORTANT: Any columns not in the parentheses of the whateverBy("Col1", "Col2") statement
// need to be an appropriate type for that aggregation method
// i.e., sums need to have all non-key columns be numbers.
import static io.deephaven.api.agg.Aggregation.AggLast
import static io.deephaven.api.agg.Aggregation.AggCount
import static io.deephaven.api.agg.Aggregation.AggSum
import static io.deephaven.api.agg.Aggregation.AggFirst
import static io.deephaven.api.agg.Aggregation.AggMax
import static io.deephaven.api.agg.Aggregation.AggMin
import static io.deephaven.api.agg.Aggregation.AggAvg
import static io.deephaven.api.agg.Aggregation.AggWAvg
import static io.deephaven.api.agg.Aggregation.AggVar
import static io.deephaven.api.agg.Aggregation.AggStd
import static io.deephaven.api.agg.Aggregation.AggMed
import static io.deephaven.api.agg.Aggregation.AggPct
firstByKey = source.firstBy("Number")
firstByTwoKeys = source.firstBy("Number", "Letter") // all below work with multi
countOfEntireTable = source.countBy("Letter") // single argument returns total count
countOfGroup = source.countBy("Number", "Letter")
firstOfGroup = source.firstBy("Letter")
lastOfGroup = source.lastBy("Letter")
sumOfGroup = source.view("Letter", "Number").sumBy("Letter")
// non-key field must be numerical
avgOfGroup = source.view("Letter", "Number").avgBy("Letter")
stdOfGroup = source.view("Letter", "Number").stdBy("Letter")
varOfGroup = source.view("Letter", "Number").varBy("Letter")
medianOfGroup = source.view("Letter", "Number").medianBy("Letter")
minOfGroup = source.view("Letter", "Number").minBy("Letter")
maxOfGroup = source.view("Letter", "Number").maxBy("Letter")
// Combined Aggregations
// combine aggregations in a single method (using the same key-grouping)
agg_list = [
AggLast("LastNumber = Number","LastLetter = Number"),
AggCount("Number"),
AggSum("Sum = Number", "Code"),
AggFirst("First = Number"),
AggMax("Max = Number"),
AggMin("Min = Number"),
AggAvg("AvgNumber = Number"),
AggWAvg("Number", "WtdAvgNumber = Number"),
AggVar("VarNumber = Number"),
AggStd("StdNumber = Number"),
AggMed("MedianNumber = Number"),
AggPct(0.75, "Perc75Number = Number")
]
combinationAgg = source.updateView("Number = Number * Code").aggBy(agg_list, "Code", "Letter")
- firstByKey
- firstByTwoKeys
- countOfEntireTable
- countOfGroup
- firstOfGroup
- lastOfGroup
- sumOfGroup
- avgOfGroup
- stdOfGroup
- varOfGroup
- medianOfGroup
- minOfGroup
- maxOfGroup
- combinationAgg
Other useful methods
Copy and paste these working examples into the console.
Reduce ticking frequency
Uses snapshotWhen
to reduce the ticking frequency.
source = timeTable("PT00:00:00.5").update("X = (int) new Random().nextInt(100)", "Y = sqrt(X)")
trigger = timeTable("PT00:00:05").renameColumns("TriggerTimestamp = Timestamp")
result = source.snapshotWhen(trigger)
Capture the history of ticking tables
Use snapshotWhen
to capture the history of ticking tables.
import io.deephaven.api.snapshot.SnapshotWhenOptions
myOpts = SnapshotWhenOptions.of(false, false, true)
source = timeTable("PT00:00:00.1").update("X = i%2 == 0 ? `A` : `B`", "Y = new Random().nextInt(100)", "Z = sqrt(Y)").lastBy("X")
trigger = timeTable("PT00:00:02").renameColumns("TriggerTimestamp = Timestamp")
result = source.snapshotWhen(trigger, myOpts)