readTable
The readTable
method will read a single Parquet file, metadata file, or directory with a recognized layout into an in-memory table.
Syntax
readTable(sourceFilePath)
readTable(sourceFilePath, readInstructions)
readTable(sourceFile)
readTable(sourceFile, readInstructions)
Parameters
Parameter | Type | Description |
---|---|---|
sourceFilePath | String | The file to load into a table. The file should exist and end with the |
sourceFile | file | The file or directory to examine. |
readInstructions | ParquetInstructions | Optional instructions for customizations while reading. Valid values are:
|
Returns
A new in-memory table from a Parquet file, metadata file, or directory with a recognized layout.
Examples
All examples in this document use data mounted in /data
in Deephaven. For more information on the relation between this location in Deephaven and on your local file system, see Docker data volumes.
Single Parquet file
For the following examples, the example data found in Deephaven's example repository will be used. Follow the instructions in Launch Deephaven from pre-built images
to download and manage the example data.
In this example, readTable
is used to load the file /data/examples/Taxi/parquet/taxi.parquet
into a Deephaven table.
import io.deephaven.parquet.table.ParquetTools
source = ParquetTools.readTable("/data/examples/Taxi/parquet/taxi.parquet")
- source
Compression codec
In this example, readTable
is used to load the file /data/output_GZIP.parquet
, with GZIP
compression, into a Deephaven table.
This file needs to exist for this example to work. To generate this file, see writeTable
.
import io.deephaven.parquet.table.ParquetTools
source = newTable(
stringCol("X", "A", "B", "B", "C", "B", "A", "B", "B", "C"),
intCol("Y",2, 4, 2, 1, 2, 3, 4, 2, 3),
intCol("Z", 55, 76, 20, 4, 230, 50, 73, 137, 214),
)
ParquetTools.writeTable(source, "/data/output_GZIP.parquet", ParquetTools.GZIP)
source = ParquetTools.readTable("/data/output_GZIP.parquet", ParquetTools.GZIP)
- source
Partitioned datasets
_metadata
and/or _common_metadata
files are occasionally present in partitioned datasets. These files can be used to load Parquet data sets more quickly. These files are specific to only certain frameworks and are not required to read the data into a Deephaven table.
_common_metadata
: File containing schema information needed to load the whole dataset faster._metadata
: File containing (1) complete relative pathnames to individual data files, and (2) column statistics, such as min, max, etc., for the individual data files.
For a directory of Parquet files, all sub-directories are also searched. Only files with a .parquet
extension or _common_metadata
and _metadata
files should be located in these directories. All files ending with .parquet
need the same schema.
The following examples use data in Deephaven's example repository. Follow the instructions in Launch Deephaven from pre-built images
to download and manage the example data.
In this example, readTable
is used to load the directory /data/examples/Pems/parquet/pems
into a Deephaven table.
import static io.deephaven.parquet.table.ParquetTools.readTable
source = readTable("/data/examples/Pems/parquet/pems")
Read from a nonlocal filesystem
Deephaven current supports reading Parquet files from your local filesystem and AWS S3. The following code block uses special instructions to read a public Parquet dataset from an S3 bucket.
import io.deephaven.parquet.table.ParquetInstructions
import io.deephaven.extensions.s3.S3Instructions
import io.deephaven.parquet.table.ParquetTools
import io.deephaven.extensions.s3.Credentials
s3Instructions = S3Instructions.builder()
.regionName('us-west-004')
.endpointOverride('https://s3.us-west-004.backblazeb2.com')
.credentials(Credentials.anonymous())
.readAheadCount(8)
.readTimeout(parseDuration('PT10s'))
.build()
parquetInstructions = ParquetInstructions.builder()
.setSpecialInstructions(s3Instructions)
.build()
drivestats = ParquetTools.readTable("s3://drivestats-parquet/drivestats/year=2023/month=02/2023-02-1.parquet", parquetInstructions)
Additionally, the S3.maxFragmentSize
configuration property can be set upon server startup. It sets the buffer size when reading Parquet from S3. The default is 5 MB. The buffer size should be set based on the largest expected fragment.