Package io.deephaven.engine.table.impl
Class SparseSelect
java.lang.Object
io.deephaven.engine.table.impl.SparseSelect
A simpler version of
TableOperations.select()
that is guaranteed to preserve the original table's RowSet.
Like select, the sparseSelected table's columns will be materialized in memory. Unlike select(), sparseSelect guarantees the original Table's RowSet is preserved. Formula columns are not supported, only the names of columns to copy into the output table. This means that each output column is independent of every other output column, which enables column-level parallelism.
-
Method Summary
Modifier and TypeMethodDescriptionstatic Table
partialSparseSelect
(Table source, String... columnNames) Create a copy of the source table with the specified columns materialized.static Table
partialSparseSelect
(Table source, Collection<String> columnNames) Create a copy of the source table with the specified columns materialized.static Table
sparseSelect
(Table source) Create a new table with all columns materialized.static Table
sparseSelect
(Table source, String... columnNames) Create a new table with the specified columns materialized and others dropped.static Table
sparseSelect
(Table source, Collection<String> columnNames) Create a new table with the specified columns materialized and others dropped.
-
Method Details
-
sparseSelect
Create a new table with all columns materialized.- Parameters:
source
- the input table- Returns:
- a copy of the source table with materialized column
-
sparseSelect
Create a new table with the specified columns materialized and others dropped.- Parameters:
source
- the input tablecolumnNames
- the columns to copy to the output- Returns:
- a copy of the source table with materialized column
-
sparseSelect
Create a new table with the specified columns materialized and others dropped.- Parameters:
source
- the input tablecolumnNames
- the columns to copy to the output- Returns:
- a copy of the source table with materialized column
-
partialSparseSelect
Create a copy of the source table with the specified columns materialized. Other columns are passed through to the output without changes.- Parameters:
source
- the input tablecolumnNames
- the columns to materialize in the output- Returns:
- a copy of the source table with materialized columns
-
partialSparseSelect
Create a copy of the source table with the specified columns materialized. Other columns are passed through to the output without changes.- Parameters:
source
- the input tablecolumnNames
- the columns to materialize in the output- Returns:
- a copy of the source table with materialized columns
-