
Transforming real-
time data at scale:
How Wunderkind Reduced
Costs by 20% with Deephaven

Written by: Christian Saide

Principal Software Engineer at Wunderkind

+ Case Study

Wunderkind Background

The Challenge

The Problem

The Requirements

The Solution

Before + After Architecture

The Results

01

02

03

04

05

06

07

Contents

+

Case Study deephaven.io

Wunderkind background

+

Case Study

01

9 billion devices
are recognized
Wunderkind leads in AI-driven
marketing, transforming brand-
audience connections with hyper-
personalized messaging. Our
Autonomous Marketing Platform
leverages first-party data,
identifying anonymous traffic via

a network that recognizes 9 billion
devices. We enable targeted offers
at the perfect moment across
email, text, and ads, integrating
with brands' systems for seamless
performance enhancement.

$5 billion in
annual revenue
Delivering over $5 billion annually
in attributable revenue, we guarantee
results, making us a top revenue
channel for clients like Harley-
Davidson and Shoe Carnival. Choose
Wunderkind for unmatched precision  
in boosting your top-line revenue.

deephaven.io

In their own words:  

Wunderkind operates across thousands  
of websites and applications, collecting
information from end users on behalf of our
clients. This staggering amount of data ranges
into the trillions of rows across pebibytes.

This analysis powers the engines behind our
decision-making, which in turn activates target
marketing campaigns for our clients. This
allows for highly granular targeting and
personalization of content and promotions.

and all of it must be analyzed and acted upon
in real time.

The Challenge

+

Case Study

02

This data is collected
at rates reaching
hundreds of thousands
of events per second,

deephaven.io

THE PROBLEM

+

Case Study

03

We are a highly talented but small team that
needs to quickly and easily manage our data and
workflows. We also require tools that can scale
to meet the demand without requiring huge time  
and resource investments.

The existing tool landscape left us with either
bespoke custom implementations to handle our use
cases or one of the incumbent ETL solutions, such
as Spark or Dataflow.

The underlying problem we faced spanned a few
different dimensions:

Existing technologies require specialists
to operate at scale, of which we had very
few on the team.

Due to our somewhat unique requirements,
the existing ETL solutions didn’t work
well out of the box.

deephaven.io

The REQUIREMENTS

+

Case Study

Our requirements were simple:

Support for E2E latencies of
sub-10s from the moment of
collection to being actionable
in our algorithms.

Out-of-the-box composability
of pipelines.

An efficient and simple
development process that  
any backend engineer can
slot into.

A flexible toolbox of
functionality we can use  
to build out our pipelines.

A rich community for
support and ideating.

Support for analyzing/
aggregating hundreds of
thousands to millions of
messages a second.

The last two requirements were key to our success. We knew we needed a
setup that would allow us to break out of the existing ETL pipeline and
create custom implementations when needed. Additionally, we sought an
active community with strong support that we could lean on as needed.

04

deephaven.io

The SOLUTION

+

Case Study

While researching alternative solutions to technologies
like Spark/Flink/Dataflow, our engineers spotted
Deephaven and immediately found it could be a great
solution for Wunderkind. Specifically, the live table
architecture built into Deephaven caught our attention.

We dove in and found that it ticked all our
requirements. First impressions from performance

testing found that running on local workstations,

Given that the performance metrics aligned, we
dove into the code and found a massive toolbox of
functionality that we could directly use, and then
ultimately modify to our specific needs as our use
cases with Deephaven grew.

The community was the last piece of the puzzle. We
have to say that the Deephaven team is one of the
best we have ever had the pleasure of working with.
Ultimately the solution became clear that we should
use Deephaven to handle our aggregations.

Deephaven was handling
hundreds of thousands of
messages a second without
breaking a sweat.

05

deephaven.io

Case Study

We leverage Redpanda for our event bus,
handling 200-250k messages per second at
peak, totaling billions of messages a day.

Deephaven handles the entire event load
processing and data analysis via Kafka and
deployed as statefulsets in a GKE cluster,
split out across partitions in the various
Kafka topics.

BEFORE + AFTER
ARCHITECTURE

The heap value ranges from 10 to 32GiB, with 1-3
CPUs per pod, each with roughly 25 total instances
on average per job.

+ 06

deephaven.io

+

Case Study

THE RESULTS

We didn’t know we needed it, but we now have a full-
featured IDE environment for debugging analysis
problems and tracing data quality issues. This
allows anyone with Python experience to add
additional components on the fly.

The new solution also allows for a shift from a
bespoke batch-oriented and cumbersome ETL system to
incrementally pre-computing analysis in real time as
data is collected from real users.

After implementing Deephaven, we saw a

07

~20% overall reduction  
in costs compared  
to the solutions in
place pre-migration.

deephaven.io

LEARN MORE AT
deephaven.io

+

