#
# Copyright (c) 2016-2024 Deephaven Data Labs and Patent Pending
#
""" This module provides various ways to make a Deephaven table. """
import datetime
from typing import Callable, List, Dict, Any, Union, Sequence, Tuple, Mapping, Optional
import jpy
import numpy as np
import pandas as pd
from deephaven import execution_context, DHError, time
from deephaven._wrapper import JObjectWrapper
from deephaven.column import InputColumn
from deephaven.dtypes import DType, Duration, Instant
from deephaven.execution_context import ExecutionContext
from deephaven.jcompat import j_lambda, j_list_to_list, to_sequence
from deephaven.table import Table, TableDefinition, TableDefinitionLike
from deephaven.update_graph import auto_locking_ctx
_JTableFactory = jpy.get_type("io.deephaven.engine.table.TableFactory")
_JTableTools = jpy.get_type("io.deephaven.engine.util.TableTools")
_JDynamicTableWriter = jpy.get_type("io.deephaven.engine.table.impl.util.DynamicTableWriter")
_JAppendOnlyArrayBackedInputTable = jpy.get_type(
"io.deephaven.engine.table.impl.util.AppendOnlyArrayBackedInputTable")
_JKeyedArrayBackedInputTable = jpy.get_type("io.deephaven.engine.table.impl.util.KeyedArrayBackedInputTable")
_JTableDefinition = jpy.get_type("io.deephaven.engine.table.TableDefinition")
_JTable = jpy.get_type("io.deephaven.engine.table.Table")
_J_INPUT_TABLE_ATTRIBUTE = _JTable.INPUT_TABLE_ATTRIBUTE
_J_InputTableUpdater = jpy.get_type("io.deephaven.engine.util.input.InputTableUpdater")
_JRingTableTools = jpy.get_type("io.deephaven.engine.table.impl.sources.ring.RingTableTools")
_JSupplier = jpy.get_type('java.util.function.Supplier')
_JFunctionGeneratedTableFactory = jpy.get_type("io.deephaven.engine.table.impl.util.FunctionGeneratedTableFactory")
[docs]def empty_table(size: int) -> Table:
"""Creates a table with rows but no columns.
Args:
size (int): the number of rows
Returns:
a Table
Raises:
DHError
"""
try:
return Table(j_table=_JTableTools.emptyTable(size))
except Exception as e:
raise DHError(e, "failed to create an empty table.") from e
[docs]def time_table(period: Union[Duration, int, str, datetime.timedelta, np.timedelta64, pd.Timedelta],
start_time: Union[None, Instant, int, str, datetime.datetime, np.datetime64, pd.Timestamp] = None,
blink_table: bool = False) -> Table:
"""Creates a table that adds a new row on a regular interval.
Args:
period (Union[dtypes.Duration, int, str, datetime.timedelta, np.timedelta64, pd.Timedelta]):
time interval between new row additions, can be expressed as an integer in nanoseconds,
a time interval string, e.g. "PT00:00:00.001" or "PT1s", or other time duration types.
start_time (Union[None, Instant, int, str, datetime.datetime, np.datetime64, pd.Timestamp], optional):
start time for adding new rows, defaults to None which means use the current time
as the start time.
blink_table (bool, optional): if the time table should be a blink table, defaults to False
Returns:
a Table
Raises:
DHError
"""
try:
builder = _JTableTools.timeTableBuilder()
if not isinstance(period, str) and not isinstance(period, int):
period = time.to_j_duration(period)
builder.period(period)
if start_time:
start_time = time.to_j_instant(start_time)
builder.startTime(start_time)
if blink_table:
builder.blinkTable(blink_table)
return Table(j_table=builder.build())
except Exception as e:
raise DHError(e, "failed to create a time table.") from e
[docs]def new_table(cols: Union[List[InputColumn], Mapping[str, Sequence]]) -> Table:
"""Creates an in-memory table from a list of input columns or a Dict (mapping) of column names and column data.
Each column must have an equal number of elements.
When the input is a mapping, an intermediary Pandas DataFrame is created from the mapping, which then is converted
to an in-memory table. In this case, as opposed to when the input is a list of InputColumns, the column types are
determined by Pandas' type inference logic.
Args:
cols (Union[List[InputColumn], Mapping[str, Sequence]]): a list of InputColumns or a mapping of columns
names and column data.
Returns:
a Table
Raises:
DHError
"""
try:
if isinstance(cols, list):
return Table(j_table=_JTableFactory.newTable(*[col.j_column for col in cols]))
else:
from deephaven.pandas import to_table
df = pd.DataFrame(cols).convert_dtypes()
return to_table(df)
except Exception as e:
raise DHError(e, "failed to create a new time table.") from e
[docs]def merge(tables: List[Table]):
"""Combines two or more tables into one aggregate table. This essentially appends the tables one on top of the
other. Null tables are ignored.
Args:
tables (List[Table]): the source tables
Returns:
a Table
Raises:
DHError
"""
try:
with auto_locking_ctx(*tables):
return Table(j_table=_JTableTools.merge([t.j_table for t in tables]))
except Exception as e:
raise DHError(e, "merge tables operation failed.") from e
[docs]def merge_sorted(tables: List[Table], order_by: str) -> Table:
"""Combines two or more tables into one sorted, aggregate table. This essentially stacks the tables one on top
of the other and sorts the result. Null tables are ignored. mergeSorted is more efficient than using merge
followed by sort.
Args:
tables (List[Table]): the source tables
order_by (str): the name of the key column
Returns:
a Table
Raises:
DHError
"""
try:
with auto_locking_ctx(*tables):
return Table(j_table=_JTableTools.mergeSorted(order_by, *[t.j_table for t in tables]))
except Exception as e:
raise DHError(e, "merge sorted operation failed.") from e
[docs]class DynamicTableWriter(JObjectWrapper):
"""The DynamicTableWriter creates a new in-memory table and supports writing data to it.
This class implements the context manager protocol and thus can be used in with statements.
"""
j_object_type = _JDynamicTableWriter
def __init__(self, col_defs: Dict[str, DType]):
"""Initializes the writer and creates a new in-memory table.
Args:
col_defs(Dict[str, DTypes]): a map of column names and types of the new table
Raises:
DHError
"""
col_names = list(col_defs.keys())
col_dtypes = list(col_defs.values())
try:
self._j_table_writer = _JDynamicTableWriter(col_names, [t.qst_type for t in col_dtypes])
self.table = Table(j_table=self._j_table_writer.getTable())
except Exception as e:
raise DHError(e, "failed to create a DynamicTableWriter.") from e
@property
def j_object(self) -> jpy.JType:
return self._j_table_writer
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
self.close()
[docs] def close(self) -> None:
"""Closes the writer.
Raises:
DHError
"""
try:
self._j_table_writer.close()
except Exception as e:
raise DHError(e, "failed to close the writer.") from e
[docs] def write_row(self, *values: Any) -> None:
"""Writes a row to the newly created table.
The type of a value must be convertible (safely or unsafely, e.g. lose precision, overflow, etc.) to the type
of the corresponding column.
Args:
*values (Any): the values of the new row, the data types of these values must match the column definitions
of the table
Raises:
DHError
"""
try:
values = to_sequence(values)
self._j_table_writer.logRowPermissive(values)
except Exception as e:
raise DHError(e, "failed to write a row.") from e
[docs]def ring_table(parent: Table, capacity: int, initialize: bool = True) -> Table:
"""Creates a ring table that retains the latest 'capacity' number of rows from the parent table.
Latest rows are determined solely by the new rows added to the parent table, deleted rows are ignored,
and updated rows are not expected and will raise an exception.
Ring table is mostly used with blink tables which do not retain their own data for more than an update cycle.
Args:
parent (Table): the parent table
capacity (int): the capacity of the ring table
initialize (bool): whether to initialize the ring table with a snapshot of the parent table, default is True
Returns:
a Table
Raises:
DHError
"""
try:
return Table(j_table=_JRingTableTools.of(parent.j_table, capacity, initialize))
except Exception as e:
raise DHError(e, "failed to create a ring table.") from e
[docs]def function_generated_table(table_generator: Callable[..., Table],
source_tables: Union[Table, List[Table]] = None,
refresh_interval_ms: int = None,
exec_ctx: ExecutionContext = None,
args: Tuple = (),
kwargs: Dict = {}) -> Table:
"""Creates an abstract table that is generated by running the table_generator() function. The function will first be
run to generate the table when this method is called, then subsequently either (a) whenever one of the
'source_tables' ticks or (b) after refresh_interval_ms have elapsed. Either 'refresh_interval_ms' or
'source_tables' must be set (but not both).
Function-generated tables can be used to produce dynamic tables from sources outside Deephaven. For example,
function-generated tables can create tables that are produced by arbitrary Python logic (including using Pandas or
numpy). They can also be used to retrieve data from external sources (such as files or websites).
The table definition must not change between invocations of the 'table_generator' function, or an exception will be raised.
Note that the 'table_generator' may access data in the sourceTables but should not perform further table operations
on them without careful handling. Table operations may be memoized, and it is possible that a table operation will
return a table created by a previous invocation of the same operation. Since that result will not have been included
in the 'source_table', it's not automatically treated as a dependency for purposes of determining when it's safe to
invoke 'table_generator', allowing races to exist between accessing the operation result and that result's own update
processing. It's best to include all dependencies directly in 'source_table', or only compute on-demand inputs under
a LivenessScope.
Args:
table_generator (Callable[..., Table]): The table generator function. This function must return a Table.
source_tables (Union[Table, List[Table]]): Source tables used by the 'table_generator' function. The
'table_generator' is rerun when any of these tables tick.
refresh_interval_ms (int): Interval (in milliseconds) at which the 'table_generator' function is rerun.
exec_ctx (ExecutionContext): A custom execution context. If 'None', the current
execution context is used. If there is no current execution context, a ValueError is raised.
args (Tuple): Optional tuple of positional arguments to pass to table_generator. Defaults to ()
kwargs (Dict): Optional dictionary of keyword arguments to pass to table_generator. Defaults to {}
Returns:
a new table
Raises:
DHError
"""
if refresh_interval_ms is None and source_tables is None:
raise DHError("Either refresh_interval_ms or source_tables must be provided!")
if refresh_interval_ms is not None and source_tables is not None:
raise DHError("Only one of refresh_interval_ms and source_tables must be provided!")
# If no execution context is provided, assume we want to use the current one.
if exec_ctx is None:
exec_ctx = execution_context.get_exec_ctx()
if exec_ctx is None:
raise ValueError("No execution context is available and exec_ctx was not provided! ")
def table_generator_function():
with exec_ctx:
result = table_generator(*args, **kwargs)
if result is None:
raise DHError("table_generator did not return a result")
if isinstance(result, Table) is False:
raise DHError("table_generator did not return a Table")
return result.j_table
# Treat the table_generator_function as a Java lambda (i.e., wrap it in a Java Supplier):
table_generator_j_function = j_lambda(table_generator_function, _JSupplier)
if refresh_interval_ms is not None:
j_function_generated_table = _JFunctionGeneratedTableFactory.create(
table_generator_j_function,
refresh_interval_ms
)
else:
# Make sure we have a list of Tables
if isinstance(source_tables, Table):
source_tables = [source_tables]
# Extract the underlying Java tables of any source_tables:
source_j_tables = []
for tbl in source_tables:
source_j_tables.append(tbl.j_table)
# Create the function-generated table:
with auto_locking_ctx(*source_tables):
j_function_generated_table = _JFunctionGeneratedTableFactory.create(
table_generator_j_function,
source_j_tables
)
return Table(j_function_generated_table)