ema_tick
ema_tick creates a tick-based (row-based) EMA (exponential moving average) for an update_by table operation. The formula for the tick-based EMA of a column is:
Where:
- is
decay_ticks, an input parameter to the method. - is the exponential moving average of at step .
- is the current value.
- denotes the time step, ranging from to , where is the number of elements in .
Syntax
ema_tick(
decay_ticks: int,
cols: list[str],
op_control: OperationControl = None,
) -> UpdateByOperation
Parameters
| Parameter | Type | Description |
|---|---|---|
| decay_ticks | int | The decay rate in ticks (rows). |
| cols | list[str] | The columns to be operated on. These can include expressions to rename the output (e.g., |
| op_control optional | OperationControl | Defines how special cases should behave. The default value is |
Returns
An UpdateByOperation to be used in an update_by table operation.
Examples
One column, no groups
The following example calculates the tick-based (row-based) EMA of the X column, renaming the resultant column to EmaX. The decay rate, decay_ticks, is set to 2. No grouping columns are specified, so the EMA is calculated over all rows.
from deephaven.updateby import ema_tick
from deephaven import empty_table
source = empty_table(10).update(["Letter = (i % 2 == 0) ? `A` : `B`", "X = i"])
result = source.update_by(ops=ema_tick(decay_ticks=2, cols=["EmaX = X"]))
One EMA column, one grouping column
The following example builds on the previous by specifying Letter as the key column. Thus, the EMA is calculated on a per-letter basis.
from deephaven.updateby import ema_tick
from deephaven import empty_table
source = empty_table(10).update(["Letter = (i % 2 == 0) ? `A` : `B`", "X = i"])
result = source.update_by(ops=ema_tick(decay_ticks=2, cols=["EmaX = X"]), by=["Letter"])
Multiple EMA columns, multiple grouping columns
The following example builds on the previous by calculating the EMA of multiple columns in the same UpdateByOperation. Also, the groups are defined by unique combinations of letter and boolean in the Letter and Truth columns, respectively.
from deephaven.updateby import ema_tick
from deephaven import empty_table
source = empty_table(20).update(
[
"Letter = (i % 2 == 0) ? `A` : `B`",
"Truth = randomBool()",
"X = i",
"Y = randomInt(5, 10)",
]
)
result = source.update_by(
ops=ema_tick(decay_ticks=2, cols=["EmaX = X", "EmaY = Y"]), by=["Letter", "Truth"]
)
Multiple UpdateByOperations, multiple grouping columns
The following example builds on the previous by calculating the EMA of multiple columns, each with its own UpdateByOperation. This allows each EMA to have its own decay rate. The different decay rates are reflected in the renamed resultant column names.
from deephaven.updateby import ema_tick
from deephaven import empty_table
source = empty_table(20).update(
[
"Letter = (i % 2 == 0) ? `A` : `B`",
"Truth = randomBool()",
"X = i",
"Y = randomInt(5, 10)",
]
)
ema_x = ema_tick(decay_ticks=2, cols=["EmaX2rows = X"])
ema_y = ema_tick(decay_ticks=4, cols=["EmaY5rows = Y"])
result = source.update_by(ops=[ema_x, ema_y], by=["Letter", "Truth"])