Skip to main content
Version: Java (Groovy)

Connect to a Kafka stream

Kafka is a distributed event streaming platform that enables you to read, write, store, and process events, also called records.

Kafka topics take on many forms, such as raw input, JSON, AVRO, or Protobuf formats. This guide shows you how to import each of these formats as Deephaven tables.

Please see our concept guide, Kafka basic terminology, for a detailed discussion of Kafka topics and supported formats. See the Apache Kafka documentation for full details on how to use Kafka.

Kafka in Deephaven

Standard data fields

Kafka has the standard data fields of partition, offset, and timestamp. Each of these fields becomes a column in the new table that stores the Kafka stream. The column names can be changed, but the type of column is set. The standard names and types for these values are:

  • KafkaPartition: int
  • KafkaOffset: long
  • KafkaTimestamp: DateTime

You can also add optional columns for:

  • Receive time: The DateTime immediately after the Deephaven process observed the records.
  • Key size (in bytes): int
  • Value size (in bytes): int

These additional columns are controlled by setting consumer properties. To disable columns which are present by default, set their names to an empty String (null values are not allowed).

...
// Snippet of Groovy consumer with KafkaPartition suppressed.

kafkaProps = new Properties()
kafkaProps.put('bootstrap.servers', 'redpanda:9092')
kafkaProps.put('schema.registry.url', 'http://redpanda:8081')
kafkaProps.put('deephaven.partition.column.name':'')
...
ColumnPropertyDefault name
Partitiondeephaven.partition.column.nameKafkaPartition
Offsetdeephaven.offset.column.nameKafkaOffset
Kafka timestampdeephaven.timestamp.column.nameKafkaTimestamp
Receive timedeephaven.receivetime.column.nameNot present
Key sizedeephaven.keybytes.column.nameNot present
Value Sizedeephaven.valuebytes.column.nameNot present

When reading a Kafka topic, you can select which partitions to listen to. By default, all partitions are read. Additionally, topics can be read from the beginning, from the latest offset, or from the first unprocessed offset. By default, all partitions are read from the latest offset.

note

The Kafka infrastructure can retain old messages for a maximum given age or retain the last message for individual keys.

While these three fields are traditionally included in the new table, you can choose to ignore them, such as when there is only one partition.

Key and value

The actual data of the Kafka stream are stored in the KafkaKey and KafkaValue columns. This is the information that is logged onto the partition with an offset at a certain time. For example, a list of Kafka messages might have a key of the user and a value of the message, and is logged at a certain time.

KafkaKey and KafkaValue are similar in that they can be nearly any sequence of bytes. The primary difference is that the key is used to create a hash that will facilitate load balancing. By default, each key and value are stored with column names of either KafkaKey or KafkaValue, and String type.

The KafkaKey and KafkaValue attributes can be:

  • simple type
  • JSON encoded
  • Avro encoded
  • ProtoBuf encoded
  • ignored (cannot ignore both key and value)

Table types

Deephaven Kafka tables can be append-only, blink, or ring.

  • Append-only tables add one row for every message ingested - thus, table size and memory consumption can grow rapidly. Set this value with table_type = TableType.append().
  • Blink tables only keep the set of rows received during the last update cycle. This forms the basis for more advanced use cases when used in combination with stateful table aggregations like lastBy. For blink tables without any downstream table operations, aggregations, or listeners, the new messages will appear as rows in the table for one UG cycle, then disappear on the next UG cycle. A blink table is the default. You can set this value to table_type = TableType.blink() to be explicit, but this is not required.
  • Ring tables retain the last N added rows for each update of the UG cycle. If more than N rows are added with an update, the last N are stored in the ring table. Set this value with table_type = TableType.ring(N).

Launching Kafka with Deephaven

Deephaven has an official docker-compose file that contains the Deephaven images along with images from Redpanda. Redpanda allows us to input data directly into a Kafka stream from the terminal. This is just one of the supported Kafka-compatible event streaming platforms. Many more are available.

info

The docker-compose.yml file linked above uses Deephaven's Python server image. To change this to Groovy, change server to server-slim on line 5 of the file.

Save this locally as a docker-compose.yml file, and launch with docker compose up.

Create a Deephaven table that listens to a Kafka topic

In this example, we consume a Kafka topic (test.topic) as a Deephaven table. The Kafka topic is populated by commands entered into the terminal.

For demonstration purposes, we will be using an append-only table and ignoring the Kafka key.

import io.deephaven.kafka.KafkaTools

kafkaProps = new Properties()
kafkaProps.put('bootstrap.servers', 'redpanda:9092')

resultAppend = KafkaTools.consumeToTable(
kafkaProps,
'test.topic',
KafkaTools.ALL_PARTITIONS,
KafkaTools.ALL_PARTITIONS_DONT_SEEK,
KafkaTools.Consume.IGNORE,
KafkaTools.Consume.simpleSpec('Command', java.lang.String),
KafkaTools.TableType.append()
)

In this example, consumeToTable creates a Deephaven table from a Kafka topic. Here, {'bootstrap.servers': 'redpanda:9092'} is a dictionary describing how the Kafka infrastructure is configured. bootstrap.servers provides the initial hosts that a Kafka client uses to connect. In this case, bootstrap.servers is set to redpanda:9092.

table_type is set to kc.TableType.append() to create an append-only table, and key_spec is set to kc.KeyValueSpec.IGNORE to ignore the Kafka key.

The result table is now subscribed to all partitions in the test.topic topic. When data is sent to the test.topic topic, it will appear in the table.

Input Kafka data for testing

For this example, information is entered into the Kafka topic via the command line. To do this, run:

docker compose exec redpanda rpk topic produce test.topic

This will wait for and send any input to the test.topic topic. Enter the information and use the keyboard shortcut Ctrl + D to send.

Once sent, that information will automatically appear in your Deephaven table.

The following example shows how to create ring and blink tables to read from the test.topic topic:

import io.deephaven.kafka.KafkaTools

kafkaProps = new Properties()
kafkaProps.put('bootstrap.servers', 'redpanda:9092')

resultRing = KafkaTools.consumeToTable(
kafkaProps,
'test.topic',
KafkaTools.ALL_PARTITIONS,
KafkaTools.ALL_PARTITIONS_DONT_SEEK,
KafkaTools.Consume.IGNORE,
KafkaTools.Consume.simpleSpec('Command', java.lang.String),
KafkaTools.TableType.ring(3)
)

resultBlink = KafkaTools.consumeToTable(
kafkaProps,
'test.topic',
KafkaTools.ALL_PARTITIONS,
KafkaTools.ALL_PARTITIONS_DONT_SEEK,
KafkaTools.Consume.IGNORE,
KafkaTools.Consume.simpleSpec('Command', java.lang.String),
KafkaTools.TableType.blink()
)

Let's run a few more docker compose exec redpanda rpk topic produce test.topic commands to input additional data into the Kafka stream. As you can see, the resultAppend table contains all of the data, the resultRing table contains the last three entries, and the resultBlink table only shows rows before the next table update cycle is executed.

Since the resultBlink table doesn't show the values in the topic, let's add a table to store the last value added to the resultBlink table.

lastBlink = resultBlink.lastBy()

Import a Kafka stream with append

In this example, consumeToTable reads the Kafka topic share.price. The specific key and value result in a table that appends new rows.

import io.deephaven.kafka.KafkaTools

kafkaProps = new Properties()
kafkaProps.put('bootstrap.servers', 'redpanda:9092')

resultRing = KafkaTools.consumeToTable(
kafkaProps,
'share.price',
KafkaTools.ALL_PARTITIONS,
KafkaTools.ALL_PARTITIONS_DONT_SEEK,
KafkaTools.Consume.simpleSpec('Symbol', java.lang.String),
KafkaTools.Consume.simpleSpec('Price', double),
KafkaTools.TableType.append()
)

Let's walk through this query, focusing on the new optional arguments we've set.

  • partitions is set to None, which specifies that we want to listen to all partitions. This is the default behavior if partitions is not explicitly defined. To listen to specific partitions, we can define them as a list of integers (e.g., partitions=[1, 3, 5]).
  • offsets is set to ALL_PARTITIONS_DONT_SEEK, which only listens to new messages produced after this call is processed.
  • key_spec is set to simple('Symbol'), which instructs the consumer to expect messages with a Kafka key field, and creates a Symbol column of type String to store the information.
  • value_spec is set to simple('Price'), which instructs the consumer to expect messages with a Kafka value field, and creates a Price column of type String to store the information.
  • table_type is set to append, which creates an append-only table.

Now let's add some entries to our Kafka stream. Run docker compose exec redpanda rpk topic produce share.price -f '%k%v\n and enter as many key-value pairs as you want, separated by spaces and new lines:

AAPL 135.60
AAPL 135.99
AAPL 136.82

Import a Kafka stream ignoring keys

In this example, consumeToTable reads the Kafka topic share.price and ignores the partition and key values.

Run the same docker compose exec redpanda rpk topic produce share.price -f '%k %v\n' command from the previous section and enter the sample key-value pairs.

import io.deephaven.kafka.KafkaTools

kafkaProps = new Properties()
kafkaProps.put('bootstrap.servers', 'redpanda:9092')

resultAppend = KafkaTools.consumeToTable(
kafkaProps,
'share.price',
KafkaTools.ALL_PARTITIONS,
KafkaTools.ALL_PARTITIONS_DONT_SEEK,
KafkaTools.Consume.IGNORE,
KafkaTools.Consume.simpleSpec('Price', double),
KafkaTools.TableType.append()
)

As you can see, the key column is not included in the output table.

Read Kafka topic in JSON format

The following two examples read the Kafka topic orders in JSON format.

This example uses jsonSpec:

import io.deephaven.engine.table.ColumnDefinition
import io.deephaven.kafka.KafkaTools

kafkaProps = new Properties()
kafkaProps.put('bootstrap.servers', 'redpanda:9092')

symbolDef = ColumnDefinition.ofString('Symbol')
priceDef = ColumnDefinition.ofDouble('Price')
qtyDef = ColumnDefinition.ofInt('Qty')

ColumnDefinition[] colDefs = [symbolDef, priceDef, qtyDef]
mapping = ['symbol': 'Symbol', 'price': 'Price', 'qty': 'Qty']

spec = KafkaTools.Consume.jsonSpec(colDefs, mapping, null)

result = KafkaTools.consumeToTable(
kafkaProps,
'orders',
KafkaTools.ALL_PARTITIONS,
KafkaTools.ALL_PARTITIONS_DONT_SEEK,
KafkaTools.Consume.IGNORE,
spec,
KafkaTools.TableType.append()
)

This example uses objectProcessorSpec with a Jackson provider.

import io.deephaven.json.jackson.JacksonProvider
import io.deephaven.engine.table.ColumnDefinition
import io.deephaven.kafka.KafkaTools
import io.deephaven.json.jackson.JacksonProvider
import io.deephaven.json.ObjectValue
import io.deephaven.json.StringValue
import io.deephaven.json.DoubleValue
import io.deephaven.json.IntValue

kafkaProps = new Properties()
kafkaProps.put('bootstrap.servers', 'redpanda:9092')

fields = ObjectValue.builder()
.putFields('symbol', StringValue.strict())
.putFields('price', DoubleValue.strict())
.putFields('qty', IntValue.strict())
.build()

provider = JacksonProvider.of(fields)

jacksonSpec = KafkaTools.Consume.objectProcessorSpec(provider)

result = KafkaTools.consumeToTable(
kafkaProps,
'orders',
KafkaTools.ALL_PARTITIONS,
KafkaTools.ALL_PARTITIONS_DONT_SEEK,
KafkaTools.Consume.IGNORE,
jacksonSpec,
KafkaTools.TableType.append()
)

Run docker compose exec redpanda rpk topic produce orders -f "%v\n" in your terminal and enter the following values:

{"symbol": "AAPL", "price": 135, "qty": 5}
{"symbol": "TSLA", "price": 730, "qty": 3}

In this query, the valueSpec argument uses jsonSpec. A JSON parameterization is used for the KafkaValue field.

After this, we see an ordered list of Groovy strings specifying column definitions.

  • The first element in each is a string for the column name in the result table.
  • The second element in each is a string for the column data type in the result table.

Within the valueSpec argument, the keyword argument of mapping is given. This is a dictionary specifying a mapping from JSON field names to resulting table column names. Column names should be in the list provided in the first argument described above. The mapping dictionary may contain fewer entries than the total number of columns defined in the first argument.

In the example, the map entry 'price' : 'Price' specifies the incoming messages are expected to contain a JSON field named price, whose value will be mapped to the Price column in the resulting table. The columns not mentioned are mapped from matching JSON fields.

If the mapping keyword argument is not provided, it is assumed that JSON field names and column names will match.

Read Kafka topic in Avro format

In this example, consumeToTable reads the Kafka topic share.price in Avro format. This example uses an external schema definition registered in the deployment testing Redpanda instance that can be seen below. A Kafka Schema Registry allows sharing and versioning of Kafka event schema definitions.

import io.deephaven.engine.table.ColumnDefinition
import io.deephaven.kafka.KafkaTools

kafkaProps = new Properties()
kafkaProps.put('bootstrap.servers', 'redpanda:9092')
kafkaProps.put('schema.registry.url', 'http://redpanda:8081')

result = KafkaTools.consumeToTable(
kafkaProps,
'orders',
KafkaTools.ALL_PARTITIONS,
KafkaTools.ALL_PARTITIONS_DONT_SEEK,
KafkaTools.Consume.IGNORE,
KafkaTools.Consume.avroSpec('share.price.record', '1'),
KafkaTools.TableType.append()
)

In this query, the first argument included an additional entry for schema.registry.url to specify the URL for a schema registry with a REST API compatible with Confluent's schema registry specification.

The valueSpec argument uses avroSpec, which specifies an Avro format for the Kafka value field.

The first positional argument in the avroSpec call specifies the Avro schema to use. In this case, avroSpec gets the schema named share.price.record from the schema registry. Alternatively, the first argument can be an org.apache.avro.Schema object obtained from getAvroSchema.

Three optional keyword arguments are supported:

  • schema_version specifies the version of the schema to get, for the given name, from the schema registry. If not specified, the default of latest is assumed. This will retrieve the latest available schema version.
  • mapping expects a dictionary value, and if provided, specifies a name mapping for Avro field names to table column names. Any Avro field name not mentioned is mapped to a column of the same name.
  • mapping_only expects a dictionary value, and if provided, specifies a name mapping for Avro field names to table column names. Any Avro field name not mentioned is omitted from the resulting table.
  • When mapping and mapping_only are both omitted, all Avro schema fields are mapped to columns using the field name as column name.

Read Kafka topic in Protobuf format

In this example, consumeToTable reads the Kafka topic share.price in protobuf format, Google’s open-source, language-neutral, cross-platform data format used to serialize structured data.

This example uses an external schema definition registered in the development testing Redpanda instance that can be seen below.

import io.deephaven.engine.table.ColumnDefinition
import io.deephaven.kafka.protobuf.ProtobufConsumeOptions
import io.deephaven.kafka.protobuf.DescriptorSchemaRegistry
import io.deephaven.kafka.KafkaTools

kafkaProps = new Properties()
kafkaProps.put('bootstrap.servers', 'redpanda:9092')
kafkaProps.put('schema.registry.url', 'http://redpanda:8081')

protoOpts = ProtobufConsumeOptions.builder().
descriptorProvider(DescriptorSchemaRegistry.builder().
subject('share.price.record').
version(1).
build()
).
build()

result = KafkaTools.consumeToTable(
kafkaProps,
'orders',
KafkaTools.ALL_PARTITIONS,
KafkaTools.ALL_PARTITIONS_DONT_SEEK,
KafkaTools.Consume.IGNORE,
KafkaTools.Consume.protobufSpec(protoOpts),
KafkaTools.TableType.append()
)

The valueSpec argument uses protobufSpec, which specifies a Protobuf format for the Kafka value field.

The first positional argument in the protobufSpec call specifies the Protobuf schema to use. In this case, protobufSpec gets the schema named share.price.record from the schema registry.

Perform multiple operations

In this example:

  • consumeToTable reads two Kafka topics, quotes and orders, into Deephaven as blink tables.
  • Table operations are used to:
    • track the latest data from each topic (using lastBy).
    • join the streams together (naturalJoin). -aggregate (AggSum) the results.
import static io.deephaven.api.agg.Aggregation.AggWSum
import static io.deephaven.api.agg.Aggregation.AggSum
import io.deephaven.engine.table.ColumnDefinition
import io.deephaven.kafka.KafkaTools

priceDef = ColumnDefinition.ofDouble('Price')
ColumnDefinition[] priceTableDefs = [priceDef]
priceSpec = KafkaTools.Consume.jsonSpec(priceTableDefs)

priceProps = new Properties()
priceProps.put('bootstrap.servers', 'redpanda:9092')
priceProps.put('deephaven.key.column.name', 'Symbol')
priceProps.put('deephaven.key.column.type', 'String')

priceTable = KafkaTools.consumeToTable(
priceProps,
'quotes',
KafkaTools.ALL_PARTITIONS,
KafkaTools.ALL_PARTITIONS_DONT_SEEK,
KafkaTools.Consume.IGNORE,
priceSpec,
KafkaTools.TableType.blink()
)

lastPrice = priceTable.lastBy('Symbol')

symbolDef = ColumnDefinition.ofString('Symbol')
idDef = ColumnDefinition.ofString('Id')
limitPriceDef = ColumnDefinition.ofDouble('LimitPrice')
qtyDef = ColumnDefinition.ofInt('Qty')
ColumnDefinition[] orderTableDefs = [symbolDef, idDef, limitPriceDef, qtyDef]
orderSpec = KafkaTools.Consume.jsonSpec(orderTableDefs)

orderProps = new Properties()
orderProps.put('bootstrap.servers', 'redpanda:9092')

ordersBlink = consumeToTable(
orderProps,
'orders',
KafkaTools.ALL_PARTITIONS,
KafkaTools.ALL_PARTITIONS_DONT_SEEK,
KafkaTools.Consume.IGNORE,
orderSpec,
KafkaTools.TableType.blink()
)

ordersWithCurrentPrice = ordersBlink.lastBy('Id').naturalJoin(lastPrice, 'Symbol', 'LastPrice = Price')

aggList = [
AggSum('Shares = Qty'),
AggWsSum('Qty', 'Notional = LastPrice')
]

totalNotional = ordersWithCurrentPrice.aggBy(aggList, 'Symbol')

Now, let's add records to the two topics. In a terminal, first run the following command to start writing to the quotes topic:

docker compose exec redpanda rpk topic produce quotes -f '%k %v\n'

Add the following entries:

AAPL {"Price": 135}
AAPL {"Price": 133}
TSLA {"Price": 730}
TSLA {"Price": 735}

After submitting these entries to the quotes topic, use the following command to write to the orders topic:

docker compose exec redpanda rpk topic produce orders -f "%v\n"

Then add the following entries in the terminal:

{"Symbol": "AAPL", "Id":"o1", "LimitPrice": 136, "Qty": 7}
{"Symbol": "AAPL", "Id":"o2", "LimitPrice": 132, "Qty": 2}
{"Symbol": "TSLA", "Id":"o3", "LimitPrice": 725, "Qty": 1}
{"Symbol": "TSLA", "Id":"o4", "LimitPrice": 730, "Qty": 9}

The tables will update as each entry is added to the Kafka streams. The final results are in the totalNotional table.

Write to a Kafka stream

Deephaven can write tables to Kafka streams as well. When data in a table changes with real-time updates, those changes are also written to Kafka. The Kafka producer package defines methods to do this.

In this example, we write a simple time table to a topic called time-topic. With only one data point, we use the X as a key and ignore the value.

import io.deephaven.kafka.KafkaPublishOptions
import io.deephaven.kafka.KafkaTools

source = timeTable('PT00:00:00.1').update('X = i')

kafkaProps = new Properties()
kafkaProps.put('bootstrap.servers', 'redpanda:9092')

options = KafkaPublishOptions.
builder().
table(source).
topic('time-topic').
config(kafkaProps).
keySpec(KafkaTools.Produce.simpleSpec('X')).
valueSpec(KafkaTools.Produce.IGNORE).
build()

runnable = KafkaTools.produceFromTable(options)

Now we write a time table to a topic called time-topic_group. The last argument is true for last_by_key_columns, which indicates we want to perform a lastBy on the keys before writing to the stream.

import io.deephaven.kafka.KafkaPublishOptions
import io.deephaven.kafka.KafkaTools

sourceGroup = timeTable('PT00:00:00.1')
.update('X = randomInt(1, 5)', 'Y = i')

kafkaProps = new Properties()
kafkaProps.put('bootstrap.servers', 'redpanda:9092')

options = KafkaPublishOptions.
builder().
table(sourceGroup).
topic('time-topic_group').
config(kafkaProps).
keySpec(KafkaTools.Produce.jsonSpec(['X'] as String[], null, null)).
valueSpec(KafkaTools.Produce.jsonSpec(['X', 'Y'] as String[], null, null)).
lastBy(true).
build()

runnable = KafkaTools.produceFromTable(options)