Create category plots
This guide shows you how to use the plot_cat
method to create category plots, which display data values from different discrete categories.
Data sourcing
From a table
When data is sourced from a Deephaven table, the following syntax can be used:
.plot_cat(series_name="series_name", t, category="Category", y="Y", y_low="YLow", y_high="YHigh", by=["GroupingColumn"])
plot_cat
is the method used to create a category plot.series_name
is the name of the series on the plot.t
is the name of the table that holds the data you want to plot.category
is the column in the source table with the category values.y
is the column in the source table with the y values.y_low
is a lower y error bar.y_high
is a higher y error bar.by
is a list of one or more columns that hold grouping data.
from deephaven.column import int_col, string_col
from deephaven.plot.figure import Figure
from deephaven import new_table
source = new_table(
[string_col("Categories", ["A", "B", "C"]), int_col("Values", [1, 3, 5])]
)
plot1 = (
Figure()
.plot_cat(series_name="Categories", t=source, category="Categories", y="Values")
.show()
)
- source
- plot1
Categories with shared axes
You can also compare multiple categories by creating a category plot with shared axes. In the following example, a second category plot has been added to the previous example, thereby creating bar graphs on the same chart:
from deephaven.plot.figure import Figure
from deephaven.column import int_col, string_col
from deephaven import new_table
source_one = new_table(
[string_col("Categories", ["A", "B", "C"]), int_col("Values", [1, 3, 5])]
)
source_two = new_table(
[string_col("Categories", ["A", "B", "C"]), int_col("Values", [2, 4, 6])]
)
new_plot = (
Figure()
.plot_cat(series_name="source_one", t=source_one, category="Categories", y="Values")
.plot_cat(series_name="source_two", t=source_two, category="Categories", y="Values")
.show()
)
- new_plot
- source_one
- source_two
Subsequent categories can be added to the chart by adding additional plot_cat
methods to the query.
Plot styles
By default, values are presented as vertical bars. Deephaven's PlotStyle
method allows you to use other styles for your plots.
In any of the examples below, you can simply use the PlotStyle
class with the appropriate value (e.g., STACKED_BAR
, HISTOGRAM
, etc.).
Category plot with Stacked Bar
from deephaven.plot.figure import Figure
from deephaven.plot import PlotStyle
from deephaven.column import int_col, string_col
from deephaven import new_table
source_one = new_table(
[string_col("Categories", ["A", "B", "C"]), int_col("Values", [1, 3, 5])]
)
source_two = new_table(
[string_col("Categories", ["A", "B", "C"]), int_col("Values", [2, 4, 6])]
)
new_plot = (
Figure()
.axes(plot_style=PlotStyle.STACKED_BAR)
.plot_cat(
series_name="Categories1", t=source_one, category="Categories", y="Values"
)
.plot_cat(
series_name="Categories2", t=source_two, category="Categories", y="Values"
)
.show()
)
- new_plot
- source_one
- source_two