emstd_tick
emstd_tick
creates a tick-based (row-based) EMSTD (exponential moving standard deviation) for an update_by
table operation. The formula for the tick-based EMSTD of a column is:
Where:
- is
decay_ticks
, an input parameter to the method. - is the exponential moving average of at step
- is the exponential moving standard deviation of at step .
- is the current value.
- denotes the time step, ranging from to , where is the number of elements in .
In the above formula, yields the correct results for subsequent calculations. However, sample variance for fewer than two data points is undefined, so the first element of an EMSTD calculation will always be NaN
.
Syntax
emstd_tick(
decay_ticks: int,
cols: list[str],
op_control: OperationControl = None,
) -> UpdateByOperation
Parameters
Parameter | Type | Description |
---|---|---|
decay_ticks | int | The decay rate in ticks (rows). |
cols | list[str] | The columns to be operated on. These can include expressions to rename the output (e.g., |
op_control optional | OperationControl | Defines how special cases should behave. The default value is |
Returns
An UpdateByOperation
to be used in an update_by
table operation.
Examples
One column, no groups
The following example calculates the tick-based (row-based) EMSTD of the X
column, renaming the resultant column to EmStdX
. The decay rate, decay_ticks
, is set to 2. No grouping columns are specified, so the EMSTD is calculated over all rows.
from deephaven.updateby import emstd_tick
from deephaven import empty_table
source = empty_table(10).update(["Letter = (i % 2 == 0) ? `A` : `B`", "X = i"])
result = source.update_by(ops=emstd_tick(decay_ticks=2, cols=["EmStdX = X"]))
- result
- source
One EMSTD column, one grouping column
The following example builds on the previous by specifying Letter
as the key column. Thus, the EMSTD is calculated on a per-letter basis.
from deephaven.updateby import emstd_tick
from deephaven import empty_table
source = empty_table(10).update(["Letter = (i % 2 == 0) ? `A` : `B`", "X = i"])
result = source.update_by(
ops=emstd_tick(decay_ticks=2, cols=["EmStdX = X"]), by=["Letter"]
)
- result
- source
Multiple EMSTD columns, multiple grouping columns
The following example builds on the previous by calculating the EMSTD of multiple columns in the same UpdateByOperation
. Also, the groups are defined by unique combinations of letter and boolean in the Letter
and Truth
columns, respectively.
from deephaven.updateby import emstd_tick
from deephaven import empty_table
source = empty_table(20).update(
[
"Letter = (i % 2 == 0) ? `A` : `B`",
"Truth = randomBool()",
"X = i",
"Y = randomInt(5, 10)",
]
)
result = source.update_by(
ops=emstd_tick(decay_ticks=2, cols=["EmStdX = X", "EmStdY = Y"]),
by=["Letter", "Truth"],
)
- result
- source
Multiple UpdateByOperations
, multiple grouping columns
The following example builds on the previous by calculating the EMSTD of multiple columns, each with its own UpdateByOperation
. This allows each EMSTD to have its own decay rate. The different decay rates are reflected in the renamed resultant column names.
from deephaven.updateby import emstd_tick
from deephaven import empty_table
source = empty_table(20).update(
[
"Letter = (i % 2 == 0) ? `A` : `B`",
"Truth = randomBool()",
"X = i",
"Y = randomInt(5, 10)",
]
)
emstd_x = emstd_tick(decay_ticks=2, cols=["EmStdX2rows = X"])
emstd_y = emstd_tick(decay_ticks=4, cols=["EmStdY5rows = Y"])
result = source.update_by(ops=[emstd_x, emstd_y], by=["Letter", "Truth"])
- result
- source