group
agg.group
returns an aggregator that computes an array of all values within an aggregation group, for each input column.
Syntax
group(cols: Union[str, list[str]]) -> Aggregation
Parameters
Parameter | Type | Description |
---|---|---|
cols | Union[str, list[str]] | The source column(s) for the calculations.
|
If an aggregation does not rename the resulting column, the aggregation column will appear in the output table, not the input column. If multiple aggregations on the same column do not rename the resulting columns, an error will result, because the aggregations are trying to create multiple columns with the same name. For example, in table.agg_by([agg.sum_(cols=[“X”]), agg.avg(cols=["X"])
, both the sum and the average aggregators produce column X
, which results in an error.
Returns
An aggregator that computes an array of all values, within an aggregation group, for each input column.
Examples
In this example, agg.group
returns an array of values of Y
as grouped by X
.
from deephaven import new_table
from deephaven.column import string_col, int_col, double_col
from deephaven import agg as agg
source = new_table(
[
string_col("X", ["A", "B", "A", "C", "B", "A", "B", "B", None]),
string_col("Y", ["M", "N", None, "N", "P", "M", None, "P", "M"]),
int_col("Number", [55, 76, 20, 130, 230, 50, 73, 137, 214]),
]
)
result = source.agg_by([agg.group(cols=["Y"])], by=["X"])
- source
- result
In this example, agg.group
returns an array of values of Y
(renamed to Z
), as grouped by X
.
from deephaven import new_table
from deephaven.column import string_col, int_col, double_col
from deephaven import agg as agg
source = new_table(
[
string_col("X", ["A", "B", "A", "C", "B", "A", "B", "B", None]),
string_col("Y", ["M", "N", None, "N", "P", "M", None, "P", "M"]),
int_col("Number", [55, 76, 20, 130, 230, 50, 73, 137, 214]),
]
)
result = source.agg_by([agg.group(cols=["Z = Y"])], by=["X"])
- source
- result
In this example, agg.group
returns an array of values of Y
(renamed to Letters
), and an array of values of Number
(renamed to Numbers
), as grouped by X
.
from deephaven import new_table
from deephaven.column import string_col, int_col, double_col
from deephaven import agg as agg
source = new_table(
[
string_col("X", ["A", "B", "A", "C", "B", "A", "B", "B", None]),
string_col("Y", ["M", "N", None, "N", "P", "M", None, "P", "M"]),
int_col("Number", [55, 76, 20, 130, 230, 50, 73, 137, 214]),
]
)
result = source.agg_by([agg.group(cols=["Letters = Y", "Numbers = Number"])], by=["X"])
- source
- result
In this example, agg.group
returns an array of values (the Number
column renamed to Numbers
), as grouped by X
and Y
.
from deephaven import new_table
from deephaven.column import string_col, int_col, double_col
from deephaven import agg as agg
source = new_table(
[
string_col("X", ["A", "B", "A", "C", "B", "A", "B", "B", None]),
string_col("Y", ["M", "N", None, "N", "P", "M", None, "P", "M"]),
int_col("Number", [55, 76, 20, 130, 230, 50, 73, 137, 214]),
]
)
result = source.agg_by([agg.group(cols=["Numbers = Number"])], by=["X", "Y"])
- source
- result
In this example, agg.group
returns an array of values Number
(renamed to Numbers
), and agg.max_
returns the maximum Number
integer, as grouped by X
.
from deephaven import new_table
from deephaven.column import string_col, int_col, double_col
from deephaven import agg as agg
source = new_table(
[
string_col("X", ["A", "B", "A", "C", "B", "A", "B", "B", None]),
string_col("Y", ["M", "N", None, "N", "P", "M", None, "P", "M"]),
int_col("Number", [55, 76, 20, 130, 230, 50, 73, 137, 214]),
]
)
result = source.agg_by(
[agg.group(cols=["Numbers = Number"]), agg.max_(cols=["MaxNumber = Number"])],
by=["X"],
)
- source
- result