ema_tick
ema_tick
creates a tick-based (row-based) EMA (exponential moving average) for an update_by
table operation. The formula for the tick-based EMA of a column is:
Where:
- is
decay_ticks
, an input parameter to the method. - is the exponential moving average of at step .
- is the current value.
- denotes the time step, ranging from to , where is the number of elements in .
Syntax
ema_tick(
decay_ticks: int,
cols: list[str],
op_control: OperationControl = None,
) -> UpdateByOperation
Parameters
Parameter | Type | Description |
---|---|---|
decay_ticks | int | The decay rate in ticks (rows). |
cols | list[str] | The columns to be operated on. These can include expressions to rename the output (e.g., |
op_control optional | OperationControl | Defines how special cases should behave. The default value is |
Returns
An UpdateByOperation
to be used in an update_by
table operation.
Examples
One column, no groups
The following example calculates the tick-based (row-based) EMA of the X
column, renaming the resultant column to EmaX
. The decay rate, decay_ticks
, is set to 2. No grouping columns are specified, so the EMA is calculated over all rows.
from deephaven.updateby import ema_tick
from deephaven import empty_table
source = empty_table(10).update(["Letter = (i % 2 == 0) ? `A` : `B`", "X = i"])
result = source.update_by(ops=ema_tick(decay_ticks=2, cols=["EmaX = X"]))
- result
- source
One EMA column, one grouping column
The following example builds on the previous by specifying Letter
as the key column. Thus, the EMA is calculated on a per-letter basis.
from deephaven.updateby import ema_tick
from deephaven import empty_table
source = empty_table(10).update(["Letter = (i % 2 == 0) ? `A` : `B`", "X = i"])
result = source.update_by(ops=ema_tick(decay_ticks=2, cols=["EmaX = X"]), by=["Letter"])
- result
- source
Multiple EMA columns, multiple grouping columns
The following example builds on the previous by calculating the EMA of multiple columns in the same UpdateByOperation
. Also, the groups are defined by unique combinations of letter and boolean in the Letter
and Truth
columns, respectively.
from deephaven.updateby import ema_tick
from deephaven import empty_table
source = empty_table(20).update(
[
"Letter = (i % 2 == 0) ? `A` : `B`",
"Truth = randomBool()",
"X = i",
"Y = randomInt(5, 10)",
]
)
result = source.update_by(
ops=ema_tick(decay_ticks=2, cols=["EmaX = X", "EmaY = Y"]), by=["Letter", "Truth"]
)
- result
- source
Multiple UpdateByOperations
, multiple grouping columns
The following example builds on the previous by calculating the EMA of multiple columns, each with its own UpdateByOperation
. This allows each EMA to have its own decay rate. The different decay rates are reflected in the renamed resultant column names.
from deephaven.updateby import ema_tick
from deephaven import empty_table
source = empty_table(20).update(
[
"Letter = (i % 2 == 0) ? `A` : `B`",
"Truth = randomBool()",
"X = i",
"Y = randomInt(5, 10)",
]
)
ema_x = ema_tick(decay_ticks=2, cols=["EmaX2rows = X"])
ema_y = ema_tick(decay_ticks=4, cols=["EmaY5rows = Y"])
result = source.update_by(ops=[ema_x, ema_y], by=["Letter", "Truth"])
- result
- source