Skip to main content
Version: Python

ema_tick

ema_tick creates a tick-based (row-based) EMA (exponential moving average) for an update_by table operation. The formula for the tick-based EMA of a column XX is:

a=e1τa = e^{\frac{-1}{\tau}}

xˉ0=x0\bar{x}_0 = x_0

xˉi=axˉi1+(1a)xi\bar{x}_i = a*\bar{x}_{i-1} + (1-a)*x_i

Where:

  • τ\tau is decay_ticks, an input parameter to the method.
  • xˉi\bar{x}_i is the exponential moving average of XX at step ii.
  • xix_i is the current value.
  • ii denotes the time step, ranging from i=1i=1 to i=n1i = n-1, where nn is the number of elements in XX.

Syntax

ema_tick(
decay_ticks: int,
cols: list[str],
op_control: OperationControl = None,
) -> UpdateByOperation

Parameters

ParameterTypeDescription
decay_ticksint

The decay rate in ticks (rows).

colslist[str]

The columns to be operated on. These can include expressions to rename the output (e.g., NewCol = Col). If None, EMA is calculated for all columns.

op_control optionalOperationControl

Defines how special cases should behave. The default value is None, which uses default OperationControl settings.

Returns

An UpdateByOperation to be used in an update_by table operation.

Examples

One column, no groups

The following example calculates the tick-based (row-based) EMA of the X column, renaming the resultant column to EmaX. The decay rate, decay_ticks, is set to 2. No grouping columns are specified, so the EMA is calculated over all rows.

from deephaven.updateby import ema_tick
from deephaven import empty_table

source = empty_table(10).update(["Letter = (i % 2 == 0) ? `A` : `B`", "X = i"])

result = source.update_by(ops=ema_tick(decay_ticks=2, cols=["EmaX = X"]))

One EMA column, one grouping column

The following example builds on the previous by specifying Letter as the key column. Thus, the EMA is calculated on a per-letter basis.

from deephaven.updateby import ema_tick
from deephaven import empty_table

source = empty_table(10).update(["Letter = (i % 2 == 0) ? `A` : `B`", "X = i"])

result = source.update_by(ops=ema_tick(decay_ticks=2, cols=["EmaX = X"]), by=["Letter"])

Multiple EMA columns, multiple grouping columns

The following example builds on the previous by calculating the EMA of multiple columns in the same UpdateByOperation. Also, the groups are defined by unique combinations of letter and boolean in the Letter and Truth columns, respectively.

from deephaven.updateby import ema_tick
from deephaven import empty_table

source = empty_table(20).update(
[
"Letter = (i % 2 == 0) ? `A` : `B`",
"Truth = randomBool()",
"X = i",
"Y = randomInt(5, 10)",
]
)

result = source.update_by(
ops=ema_tick(decay_ticks=2, cols=["EmaX = X", "EmaY = Y"]), by=["Letter", "Truth"]
)

Multiple UpdateByOperations, multiple grouping columns

The following example builds on the previous by calculating the EMA of multiple columns, each with its own UpdateByOperation. This allows each EMA to have its own decay rate. The different decay rates are reflected in the renamed resultant column names.

from deephaven.updateby import ema_tick
from deephaven import empty_table

source = empty_table(20).update(
[
"Letter = (i % 2 == 0) ? `A` : `B`",
"Truth = randomBool()",
"X = i",
"Y = randomInt(5, 10)",
]
)

ema_x = ema_tick(decay_ticks=2, cols=["EmaX2rows = X"])
ema_y = ema_tick(decay_ticks=4, cols=["EmaY5rows = Y"])

result = source.update_by(ops=[ema_x, ema_y], by=["Letter", "Truth"])