one_click_partitioned_table
The one_click_partitioned_table
method creates a SelectableDataSet
with the specified columns from a table map. This is useful in dynamic plotting, where Deephaven requires a SelectableDataSet
instead of a standard table to execute certain operations.
Syntax
one_click_partitioned_table(
pt: PartitionedTable,
require_all_filters: bool = False
) -> SelectableDataSet
Parameters
Parameter | Type | Description |
---|---|---|
pt | PartitionedTable | The source table. |
require_all_filters optional | bool | Whether to display data when some, but not all, Input Filters are applied. |
Returns
Examples
In this example, we create a source table, then use partition_by
to create a partitioned table. Next, we use one_click_partitioned_table
to create a SelectableDataSet
copy of the table. Finally, we use plot_xy
to turn our SelectableDataSet
into a plot, which can then be filtered via Controls > Input Filter in the user interface.
from deephaven import read_csv
from deephaven.plot.selectable_dataset import one_click_partitioned_table
from deephaven.plot.figure import Figure
source = read_csv(
"https://media.githubusercontent.com/media/deephaven/examples/main/CryptoCurrencyHistory/CSV/CryptoTrades_20210922.csv"
)
partitioned_source = source.partition_by("Exchange")
oc = one_click_partitioned_table(pt=partitioned_source, require_all_filters=True)
plot = Figure().plot_xy(series_name="Plot", t=oc, x="Timestamp", y="Price").show()
Note that multiple filters can be used at once. For example: