formula
formula
returns an aggregator that computes a user-defined formula aggregation across specified columns.
Syntax
formula(formula, formula_param, cols: list[str]) -> Aggregation
Parameters
Parameter | Type | Description |
---|---|---|
formula | str | The user-defined formula to apply to each group. This formula can contain a combination of any of the following:
|
formula_param | str | The parameter name within the formula. If |
cols | list[str] | The source column(s) for the calculations.
|
If an aggregation does not rename the resulting column, the aggregation column will appear in the output table, not the input column. If multiple aggregations on the same column do not rename the resulting columns, an error will result, because the aggregations are trying to create multiple columns with the same name. For example, in table.agg_by([agg.sum_(cols=[“X”]), agg.avg(cols=["X"])
, both the sum and the average aggregators produce column X
, which results in a name conflict error.
Returns
An aggregator that computes a user-defined formula within an aggregation group, for each input column.
Examples
In this example, agg.formula
is used to calculate the aggregate minimum across several columns by the Letter
column.
from deephaven import empty_table
from deephaven import agg
source = empty_table(20).update(
["X = i", "Y = 2 * i", "Z = 3 * i", "Letter = (X % 2 == 0) ? `A` : `B`"]
)
result = source.agg_by(
agg.formula(
formula="min(each)",
formula_param="each",
cols=["MinX = X", "MinY = Y", "MinZ = Z"],
),
by=["Letter"],
)
- source
- result
In this example, agg.formula
is used to calculate the aggregated average across several columns by the Letter
and Color
column.
from deephaven import empty_table
from deephaven import agg
colors = ["Red", "Blue", "Green"]
formulas = [
"X = 0.1 * i",
"Y1 = Math.pow(X, 2)",
"Y2 = Math.sin(X)",
"Y3 = Math.cos(X)",
]
grouping_cols = ["Letter = (i % 2 == 0) ? `A` : `B`", "Color = (String)colors[i % 3]"]
source = empty_table(40).update(formulas + grouping_cols)
myagg = [
agg.formula(
formula="avg(k)",
formula_param="k",
cols=[f"AvgY{idx} = Y{idx}" for idx in range(1, 4)],
)
]
result = source.agg_by(aggs=myagg, by=["Letter", "Color"])
- source
- result
In this example, agg.formula
is used to calculate the aggregate sum of squares across each of the X
, Y
, and Z
columns by the Letter
column.
from deephaven import empty_table
from deephaven import agg
source = empty_table(20).update(
["X = i", "Y = 2 * i", "Z = 3 * i", "Letter = (X % 2 == 0) ? `A` : `B`"]
)
my_agg = [
agg.formula(
formula="sum(each * each)",
formula_param="each",
cols=["SumSqrX = X", "SumSqrY = Y", "SumSqrZ = Z"],
)
]
result = source.agg_by(my_agg, by=["Letter"])
- source
- result
In this example, agg.formula
calls a user-defined function, range
, to calculate the aggregate range of the X
, Y
, and Z
columns by Letter
.
Type hints will not set the column type when used in agg.formula
. Use an explicit typecast in the formula string to ensure the resultant column(s) are of the correct type.
from deephaven import empty_table
from deephaven import agg
def range(each):
return max(each) - min(each)
source = empty_table(20).update(
["X = i", "Y = 2 * i", "Z = 3 * i", "Letter = (X % 2 == 0) ? `A` : `B`"]
)
result = source.agg_by(
[
agg.formula(
formula="(int)range(each)",
formula_param="each",
cols=["RangeX = X", "RangeY = Y", "RangeZ = Z"],
)
],
by=["Letter"],
)
- source
- result