sum_by
sum_by
returns the total sum for each group. Null values are ignored.
caution
Applying this aggregation to a column where the sum can not be computed will result in an error. For example, the sum is not defined for a column of string values.
Syntax
table.sum_by(by: Union[str, list[str]]) -> Table
Parameters
Parameter | Type | Description |
---|---|---|
by optional | Union[str, list[str]] | The column(s) by which to group data.
|
Returns
A new table containing the sum for each group.
Examples
In this example, sum_by
returns the sum of the whole table. Because a sum can not be computed for the string columns X
and Y
, these columns are dropped before applying sum_by
.
from deephaven import new_table
from deephaven.column import string_col, int_col
source = new_table(
[
string_col("X", ["A", "B", "A", "C", "B", "A", "B", "B", "C"]),
string_col("Y", ["M", "N", "O", "N", "P", "M", "O", "P", "M"]),
int_col("Number", [55, 76, 20, 130, 230, 50, 73, 137, 214]),
]
)
result = source.drop_columns(cols=["X", "Y"]).sum_by()
- source
- result
In this example, sum_by
returns the sum, as grouped by X
. Because a sum can not be computed for the string column Y
, this column is dropped before applying sum_by
.
from deephaven import new_table
from deephaven.column import string_col, int_col
source = new_table(
[
string_col("X", ["A", "B", "A", "C", "B", "A", "B", "B", "C"]),
string_col("Y", ["M", "N", "O", "N", "P", "M", "O", "P", "M"]),
int_col("Number", [55, 76, 20, 130, 230, 50, 73, 137, 214]),
]
)
result = source.drop_columns(cols=["Y"]).sum_by(by=["X"])
- source
- result
In this example, sum_by
returns the sum, as grouped by X
and Y
.
from deephaven import new_table
from deephaven.column import string_col, int_col
source = new_table(
[
string_col("X", ["A", "B", "A", "C", "B", "A", "B", "B", "C"]),
string_col("Y", ["M", "N", "O", "N", "P", "M", "O", "P", "M"]),
int_col("Number", [55, 76, 20, 130, 230, 50, 73, 137, 214]),
]
)
result = source.sum_by(by=["X", "Y"])
- source
- result