Skip to main content
Version: Python

ema_time

ema_time creates a time-based EMA (exponential moving average) for an update_by table operation. The formula for the time-based EMA of a column XX is:

ai=edtiτa_i = e^{\frac{-dt_i}{\tau}}

xˉ0=x0\bar{x}_0 = x_0

xˉi=aixˉi1+(1ai)xi\bar{x}_i = a_i*\bar{x}_{i-1} + (1-a_i)*x_i

Where:

  • dtidt_i is the difference between time tit_i and ti1t_{i-1} in nanoseconds.
  • τ\tau is decay_time in nanoseconds, an input parameter to the method.
  • xˉi\bar{x}_i is the exponential moving average of XX at time step ii.
  • xix_i is the current value.
  • ii denotes the time step, ranging from i=1i=1 to i=n1i = n-1, where nn is the number of elements in XX.

Syntax

ema_time(
ts_col: str,
decay_time: Union[str, int],
cols: list[str],
op_control: OperationControl = None,
) -> UpdateByOperation

Parameters

ParameterTypeDescription
ts_colstr

The name of the column containing timestamps.

decay_timeUnion[str,int]

The decay rate. This can be expressed as an integer in nanoseconds or a string duration, e.g., "PT00:00:00.001" or "PTnHnMnS", where H is hour, M is minute, and S is second.

colslist[str]

The column(s) to be operated on. These can include expressions to rename the output (e.g., NewCol = Col). If None, EMA is calculated for all applicable columns.

op_control optionalOperationControl

Defines how special cases should behave. The default value is None, which uses default OperationControl settings.

Returns

An UpdateByOperation to be used in an update_by table operation.

Examples

One column, no group

The following example calculates the time-based EMA of the X column, renaming the resultant column to EmaX. The decay rate, decay_time, is set to 5 seconds. No grouping columns are specified, so the EMA is calculated for all rows.

from deephaven.updateby import ema_time
from deephaven import empty_table

source = empty_table(60).update(
[
"Timestamp = '2023-05-01T00:00:00 ET' + i * SECOND",
"Letter = (i % 2 == 0) ? `A` : `B`",
"X = randomInt(0, 25)",
]
)

result = source.update_by(
ops=[ema_time(ts_col="Timestamp", decay_time="PT00:00:05", cols=["EmaX = X"])]
)

One EMA column, one grouping column

The following example builds on the previous by specifying a single grouping column, Letter. Thus, the time-based EMA is calculated separately for each unique letter in Letter.

from deephaven.updateby import ema_time
from deephaven import empty_table

source = empty_table(60).update(
[
"Timestamp = '2023-05-01T00:00:00 ET' + i * SECOND",
"Letter = (i % 2 == 0) ? `A` : `B`",
"X = randomInt(0, 25)",
]
)

result = source.update_by(
ops=[ema_time(ts_col="Timestamp", decay_time="PT00:00:05", cols=["EmaX = X"])],
by=["Letter"],
)

Multiple EMA columns, multiple grouping columns

The following example builds on the previous by specifying multiple columns in a single EMA and renaming both appropriately. Additionally, groups are created from both the Letter and Truth columns, so groups are defined by unique combinations of letter and boolean, respectively.

from deephaven.updateby import ema_time
from deephaven import empty_table

source = empty_table(60).update(
[
"Timestamp = '2023-05-01T00:00:00 ET' + i * SECOND",
"Letter = (i % 2 == 0) ? `A` : `B`",
"Truth = randomBool()",
"X = randomInt(0, 25)",
"Y = i",
]
)

result = source.update_by(
ops=[
ema_time(
ts_col="Timestamp", decay_time="PT00:00:05", cols=["EmaX = X", "EmaY = Y"]
)
],
by=["Letter", "Truth"],
)

Multiple UpdateByOperations, multiple grouping columns

The following example builds on the previous by calculating the EMA of multiple columns, each with its own UpdateByOperation. This allows each EMA to have its own decay rate. The different decay rates are reflected in the renamed resultant column names.

from deephaven.updateby import ema_time
from deephaven import empty_table

source = empty_table(60).update(
[
"Timestamp = '2023-05-01T00:00:00 ET' + i * SECOND",
"Letter = (i % 2 == 0) ? `A` : `B`",
"Truth = randomBool()",
"X = randomInt(0, 25)",
"Y = i",
]
)

ema_x = ema_time(ts_col="Timestamp", decay_time="PT5S", cols=["EmaX5sec = X"])
ema_y = ema_time(ts_col="Timestamp", decay_time="PT3S", cols=["EmaY3sec = Y"])

result = source.update_by(ops=[ema_x, ema_y], by=["Letter", "Truth"])