emstd_time
emstd_time
creates a time-based EMSTD (exponential moving standard deviation) for an update_by
table operation. The formula for the time-based EMSTD of a column is:
Where:
- is the difference between time and in nanoseconds.
- is
decay_time
in nanoseconds, an input parameter to the method. - is the exponential moving average of at step
- is the exponential moving standard deviation of at time step .
- is the current value.
- denotes the time step, ranging from to , where is the number of elements in .
In the above formula, yields the correct results for subsequent calculations. However, sample variance for fewer than two data points is undefined, so the first element of an EMSTD calculation will always be NaN
.
Syntax
emstd_time(
ts_col: str,
decay_time: Union[str, int],
cols: list[str],
op_control: OperationControl = None,
) -> UpdateByOperation
Parameters
Parameter | Type | Description |
---|---|---|
ts_col | str | The name of the column containing timestamps. |
decay_time | Union[str,int] | The decay rate. This can be expressed as an integer in nanoseconds or a string duration; e.g., |
cols | list[str] | The column(s) to be operated on. These can include expressions to rename the output (e.g., |
op_control optional | OperationControl | Defines how special cases should behave. The default value is |
Returns
An UpdateByOperation
to be used in an update_by
table operation.
Examples
One column, no group
The following example calculates the time-based EMSTD of the X
column, renaming the resultant column to EmStdX
. The decay rate, decay_time
, is set to 5 seconds. No grouping columns are specified, so the EMSTD is calculated for all rows.
from deephaven.updateby import emstd_time
from deephaven import empty_table
source = empty_table(60).update(
[
"Timestamp = '2023-05-01T00:00:00 ET' + i * SECOND",
"Letter = (i % 2 == 0) ? `A` : `B`",
"X = randomInt(0, 25)",
]
)
result = source.update_by(
ops=[emstd_time(ts_col="Timestamp", decay_time="PT00:00:05", cols=["EmStdX = X"])]
)
- result
- source
One EMSTD column, one grouping column
The following example builds on the previous by specifying a single grouping column, Letter
. Thus, the time-based EMSTD is calculated separately for each unique letter in Letter
.
from deephaven.updateby import emstd_time
from deephaven import empty_table
source = empty_table(60).update(
[
"Timestamp = '2023-05-01T00:00:00 ET' + i * SECOND",
"Letter = (i % 2 == 0) ? `A` : `B`",
"X = randomInt(0, 25)",
]
)
result = source.update_by(
ops=[emstd_time(ts_col="Timestamp", decay_time="PT00:00:05", cols=["EmStdX = X"])],
by=["Letter"],
)
- result
- source
Multiple EMSTD columns, multiple grouping columns
The following example builds on the previous by specifying multiple columns in a single EMSTD and renaming both appropriately. Additionally, groups are created from both the Letter
and Truth
columns, so groups are defined by unique combinations of letter and boolean, respectively.
from deephaven.updateby import emstd_time
from deephaven import empty_table
source = empty_table(60).update(
[
"Timestamp = '2023-05-01T00:00:00 ET' + i * SECOND",
"Letter = (i % 2 == 0) ? `A` : `B`",
"Truth = randomBool()",
"X = randomInt(0, 25)",
"Y = i",
]
)
result = source.update_by(
ops=[
emstd_time(
ts_col="Timestamp",
decay_time="PT00:00:05",
cols=["EmStdX = X", "EmStdY = Y"],
)
],
by=["Letter", "Truth"],
)
- result
- source
Multiple UpdateByOperations
, multiple grouping columns
The following example builds on the previous by calculating the EMSTD of multiple columns, each with its own UpdateByOperation
. This allows each EMSTD to have its own decay rate. The different decay rates are reflected in the renamed resultant column names.
from deephaven.updateby import emstd_time
from deephaven import empty_table
source = empty_table(60).update(
[
"Timestamp = '2023-05-01T00:00:00 ET' + i * SECOND",
"Letter = (i % 2 == 0) ? `A` : `B`",
"Truth = randomBool()",
"X = randomInt(0, 25)",
"Y = i",
]
)
emstd_x = emstd_time(ts_col="Timestamp", decay_time="PT5S", cols=["EmStdX5sec = X"])
emstd_y = emstd_time(ts_col="Timestamp", decay_time="PT3S", cols=["EmStdY3sec = Y"])
result = source.update_by(ops=[emstd_x, emstd_y], by=["Letter", "Truth"])
- result
- source