distinct
agg.distinct
creates an aggregation that computes the distinct values within an aggregation group for each of the given columns and stores them as vectors.
Syntax
distinct(cols: Union[str, list[str]], include_nulls = False) -> Aggregation
Parameters
Parameter | Type | Description |
---|---|---|
cols | Union[str, list[str]] | The source column(s) for the calculations.
|
include_nulls | bool | Whether or not to include nulls as distinct values. Default is |
If an aggregation does not rename the resulting column, the aggregation column will appear in the output table, not the input column. If multiple aggregations on the same column do not rename the resulting columns, an error will result, because the aggregations are trying to create multiple columns with the same name. For example, in table.agg_by([agg.sum_(cols=[“X”]), agg.avg(cols=["X"])
, both the sum and the average aggregators produce column X
, which results in an error.
Returns
An aggregator that computes the number of distinct values within an aggregation group for each of the given columns and stores them as vectors.
Examples
In this example, agg.distinct
returns the number of distinct values of Y
as grouped by X
from deephaven import new_table
from deephaven.column import string_col, int_col, double_col
from deephaven import agg
from deephaven.constants import NULL_INT
source = new_table(
[
string_col(
"X",
[
"A",
"B",
"A",
"C",
"B",
"A",
"B",
"B",
"A",
"A",
"B",
"A",
"C",
"B",
"A",
"B",
"B",
"C",
],
),
string_col(
"Y",
[
"M",
"N",
"M",
"N",
"N",
"M",
"O",
"P",
"N",
"M",
"N",
"M",
"N",
"N",
"M",
"O",
"P",
"N",
],
),
int_col(
"Number",
[
55,
76,
55,
NULL_INT,
230,
50,
76,
137,
333,
55,
76,
55,
130,
NULL_INT,
50,
76,
137,
214,
],
),
]
)
result1 = source.agg_by([agg.distinct(cols=["Number"])], by=["X"])
result2 = source.agg_by([agg.distinct(cols=["Number"], include_nulls=True)], by=["X"])
- source
- result1
- result2